Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte.

نویسندگان

  • B M Lowe
  • Y Maekawa
  • Y Shibuta
  • T Sakata
  • C-K Skylaris
  • N G Green
چکیده

Electronic devices are becoming increasingly used in chemical- and bio-sensing applications and therefore understanding the silica-electrolyte interface at the atomic scale is becoming increasingly important. For example, field-effect biosensors (BioFETs) operate by measuring perturbations in the electric field produced by the electrical double layer due to biomolecules binding on the surface. In this paper, explicit-solvent atomistic calculations of this electric field are presented and the structure and dynamics of the interface are investigated in different ionic strengths using molecular dynamics simulations. Novel results from simulation of the addition of DNA molecules and divalent ions are also presented, the latter of particular importance in both physiological solutions and biosensing experiments. The simulations demonstrated evidence of charge inversion, which is known to occur experimentally for divalent electrolyte systems. A strong interaction between ions and DNA phosphate groups was demonstrated in mixed electrolyte solutions, which are relevant to experimental observations of device sensitivity in the literature. The bound DNA resulted in local changes to the electric field at the surface; however, the spatial- and temporal-mean electric field showed no significant change. This result is explained by strong screening resulting from a combination of strongly polarised water and a compact layer of counterions around the DNA and silica surface. This work suggests that the saturation of the Stern layer is an important factor in determining BioFET response to increased salt concentration and provides novel insight into the interplay between ions and the EDL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV-Vis spectroscopic study of the stability of Silver nanoparticles in monovalent and divalent electrolyte solutions

Nanotechnology has been advanced since the last decades. Among all nanomaterials that have been developed, nanosilver is the most frequently used nanoparticles. Its release into natural water bodies is inevitable due to its broad applications. Nanosilver (nAg) was prepared via Tollens method using. The morphology, size distribution and average size of the obtained nAg was characterized using Tr...

متن کامل

UV-Vis spectroscopic study of the stability of Silver nanoparticles in monovalent and divalent electrolyte solutions

Nanotechnology has been advanced since the last decades. Among all nanomaterials that have been developed, nanosilver is the most frequently used nanoparticles. Its release into natural water bodies is inevitable due to its broad applications. Nanosilver (nAg) was prepared via Tollens method using. The morphology, size distribution and average size of the obtained nAg was characterized using Tr...

متن کامل

Dip coating of silica layer on melt-spun Finemet ribbons: surface morphology and electrical resistivity changes

In this study, melt-spun Finemet ribbons were coated by a thin layer of SiO2 using dip coating method. Amorphous ribbon prepared by melt spinning method and dip coating were done by using a solution of tetraethylen orthosilicate as a SiO2 precursor, ethanol as solvent and distilled water for hydrolysis. Different thicknesses of SiO2 layer, namely 304, 349, 451, 526 and 970 nm were obtained prop...

متن کامل

Numerical Simulation of Non-Uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance

Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study ...

متن کامل

Supercapacitive Performance of Ordered Mesoporous Carbon (CMK-3) in Neutral Aqueous Electrolyte

Ordered Mesoporous Carbon (OMC) represents an interesting material for electric double layer capacitors which has the high surface area, easily accessed ordered pore channels and lower production cost. In this work, CMK-3 as promising OMC has been fabricated using the ordered mesoporous silica SBA-15 as a template. The structure and morphology of CMK-3 are characterized by X-ray diffraction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2017